システム工学科

熊澤 宏之

クマザワ ヒロユキ  (Hiroyuki Kumazawa)

基本情報

所属
大阪産業大学 システム工学部システム工学科 教授
学位
Ph. D(Osaka University)
博士(工学)(大阪大学)

研究者番号
00592320
J-GLOBAL ID
201201002457971962
researchmap会員ID
7000000890

学歴

 1

論文

 11
  • Hiroyuki Kumazawa
    11th IEEE International Conference on Sustainable Technology and Engineering CSDE-2024_606 2024年12月  査読有り筆頭著者
    Drones having high resolution cameras and sensors have become more available and cheaper. We use drone-captured images taken directly above the plantation to research how well the types and areas of fruit trees, as well as other features, can be recognized. Wide-area images are synthesized from numerous locally captured images taken by the drone and are then divided into blocks (image blocks) with a certain amount of overlap to increase the number of blocks available for training. In this paper, semantic segmentation is applied to these blocks, and their classification performance is evaluated. In these evaluations, it is clarified that the overlaps in the blocks make it difficult to properly separate the training data for training the semantic segmentation network from the test data for performance evaluation. To address these issues, data augmentation is applied to the test data, and the evaluation results are presented.
  • 濱田 悠司, 澤 良次, 後藤 幸夫, 熊澤 宏之
    電気学会論文誌C 130(3) 468-475 2010年3月  査読有り
    In ad-hoc network such as inter-vehicle communication (IVC) system, safety applications that vehicles broadcast the information such as car velocity, position and so on periodically are considered. In these applications, if there are many vehicles broadcast data in a communication area, congestion incurs a problem decreasing communication reliability. We propose autonomous distributed transmit power control method to keep high communication reliability. In this method, each vehicle controls its transmit power using feed back control. Furthermore, we design a communication protocol to realize the proposed method, and we evaluate the effectiveness of proposed method using computer simulation.
  • 伊川雅彦, 五十嵐雄治, 後藤幸夫, 熊澤宏之, 津田喜秋, 森田茂樹
    情報処理学会論文誌 50(1) 42-50 2009年1月  査読有り
    ITS(Intelligent Transport Systems)とは,先進の情報通信技術を用いて道路·車·人が一体となったシステムを実現することにより,道路交通の安全性,輸送効率,快適性の向上などを目指したシステムである.このITS専用の路車間通信としてDSRC(Dedicated Short Range Communication)がある.本稿では,このDSRCの応用技術として,高速移動する車に対して車両位置に特化した情報提供を行うプッシュ型情報配信アプリケーションについて,そのアーキテクチャとプロトコルについて述べる.また,提案するプロトコルを実際のDSRC路側機と車載器に実装し,通信試験を行うことで,走行車両への通信量の検討と,様々な車載システムへの適用可能性を確認した結果について述べる.DSRC (Dedicated Short Range Communication) is an expected and potential wireless communication medium for ITS applications. Location based information push services for driving vehicle, such as safety information, road traffic conditions and so on, are key application of DSRC. In this paper, we have proposed architecture and the application protocol for these services. And we report its performance and availability for various services through experiments with real DSRC RSU (Road Side Unit) and OBU (On Board Unit).
  • 西馬功泰, 後藤幸夫, 熊澤宏之, 駒谷喜代俊
    計測自動制御学会論文集829—836 42(7) 829-836 2006年7月  査読有り
    We propose a general prediction method based on the efficient computation and online update of the Singular Value Decomposition (SVD) of historical data. The SVD is fundamental to many data modeling algorithms, but the traditional methods for computing it require large computational costs. By adopting a fast sequential SVD updating scheme, the tasks of prediction, imputation of missing values, and model updating can be performed very quickly. In this paper, an application of our method to route travel time prediction is described. Using real travel time data from short sections (links) on expressway, we evaluated prediction performance of travel time on longer section (route) including the links. Experimental comparisons with several statistical machine learning methods suggest that our linear prediction method can achieve similar prediction performance (prediction error) to other nonlinear methods at less computaional cost.
  • 伊川雅彦, 後藤幸夫, 熊澤宏之, 津田喜秋, 岡賢一郎
    電子情報通信学会論文誌 J88-A(2) 218-227 2005年2月  査読有り

MISC

 3

講演・口頭発表等

 41
  • 藤元 祐輝、熊澤 宏之(大阪産業大学)、遠藤 晶 (武庫川女子大学)
    電気学会情報システム研究会、IS-25-001 2025年2月25日 電気学会
    本研究は、YOLOv8-poseを用いて群衆画像から人物の骨格検出を行い、その検出精度向上を目指す。群衆画像として教育現場で生徒が集団で体操などを行っている映像データを使用する。YOLOv8-poseで処理する画像サイズに着目し、処理画像サイズの違いによる検出精度の違いを検証した。その結果、カメラに近く大面積を占める人物は縮小した画像、小面積の遠い人物は縮小しない画像で処理することが望ましいことが分かった。これらを融合することで検知精度の向上を目指す。
  • 熊澤 宏之
    電気学会電子・情報・システム部門大会、OS1-2-1 2024年9月5日 電気学会
    農園の上空をドローンで飛行して撮像した画像から、農園に植えられている果樹や地上の構造物の識別を行うことを検討している。既報告では、高解像度の広域画像を複数のブロックに分割し、そのブロックを学習単位としてセマンティックセグメンテーションを用いて画素ごとの果樹識別を行った。その際に、ブロックの大きさが分類精度に与える影響の評価を試みたが、学習データとして用いるブロックの重なりを許容したため、評価結果の判断が難しかった。そこで、本稿ではブロックの重なりを排除し、学習に際してデータ拡張を行うと共に、精度評価においてもデータを拡張することで、ブロックサイズと精度の関係を評価する。評価にあたっては、正解率(Accuracy)に加えて、物体検出の指標としてIoU(Intersection over Union)を用いる。
  • 熊澤 宏之
    2023年電気学会電子・情報・システム部門大会 2023年8月30日 電気学会
    高精細なカメラを搭載したドローンが安価に入手可能になり、新たな情報獲得手段として注目されている。本稿では、農園の上空をドローンで飛行して撮像した画像から、農園に植えられている果樹や地上の構造物の識別を行うことを検討する。既報告では、ドローンで農園を局所的に撮像した複数の画像から、広域の画像を作成し、その広域画像に対して深層学習の一つであるCNN (Convolutional Neural Network)をベースにしたセマンティックセグメンテーションを用いて画素ごとの果樹識別を行った。その際、広域画像は画素数が多いため、複数のブロックに分割し、そのブロックを学習単位としてネットワークの学習を行なったが、ブロックの大きさ、重なりなどが分類精度に与える影響を検討できておらず、十分な評価が行えていなかった。そこで、本稿ではブロック分割の様々なパラメータが分類精度に与える影響について評価を行った結果について報告する。
  • 熊澤宏之
    2022年電気学会電子・情報・システム部門大会 2022年8月31日
    高精細なカメラを搭載したドローンが安価に入手可能になり、新たな情報獲得手段として注目されている。本稿では、農園の上空をドローンで飛行して撮像した画像から、農園に植えられている果樹や地上の構造物の識別を行うことを検討する。既報告では、果樹の識別には深層学習の一つであるCNN (Convolutional Neural Network)を用い、一定の大きさの画像を入力としてブロック単位に識別を行うと共に、ブロックをずらしながら画素単位での識別結果のVotingにより、より精細な識別を試みた。本報告では、画素単位で識別の学習を行うセマンティックセグメンテーションを用い、画素単位に果樹や地上の構造物の識別を行う。本稿では、まず、画像の取得方法、取得した画像の応用例について紹介し、セグメンテーションの単位となる画像のサイズを調整し、識別精度の評価を行う。
  • 熊澤 宏之
    2021年電気学会 電子・情報・システム部門大会 2021年9月15日 電気学会
    スマートフォンに搭載されている種々センサの情報を利用し、機械学習により移動モード(歩行、自動車、鉄道など、どのような手段で移動しているか)を検知することを試みている。既報告では、取得した加速度データ・ジャイロデータから、決定木、ランダムフォレストなどの機械学習を用いてセンサデータを分類することによる移動モード検知と、移動モード検知の後処理として、検知エラーを補正する重み付き多数決補正による検知精度の改善方式を提案した。 本報告では、後処理を機械学習に組み込む検討の第一歩として、深層学習の中でも時系列データに対応できるLSTM (Long Short Term Memory)を用いた移動モード検知について検討する。現時点では、その精度は既報告の補正方式による精度を超えるものではないが、LSTMでは最適化すべきパラメータが多いことから、その最適化については今後の検討課題としたい。

所属学協会

 5

共同研究・競争的資金等の研究課題

 2

産業財産権

 16
  • Goto Yukio, Ikawa Masahiko, Kumazawa Hiroyuki, Nakamura Sadatoshi
    移動局装置に新たなアプリケーションを追加することなく、移動局装置と外部端末との連携を実現する、移動局装置及び外部端末を提供することを目的とする。
  • 石上 忠富, 西馬 功泰, 澤 良次, 後藤 幸夫, 熊澤 宏之, 梅津 正春, 池内 智哉, 河野 篤, 石田 雅之, 下谷 光生
    未登録道路を含む道路上の走行軌跡から未登録道路の座標を自動的かつ正確に検出して道路データを作成できるナビゲーション装置を提供する。
  • 伊川 雅彦, 後藤 幸夫, 熊澤 宏之, 津田 喜秋
    移動する車両に対して応用サービスを提供する路車間通信システムにおいて、走行中においても様々なアプリケーションを実行可能なメカニズムを備えた非ネットワーク型の通信プロトコルを提供することを目的とする。
  • Ikawa Masahiko, Goto Yukio, Kumazawa Hiroyuki, Tsuda Yoshiaki
    移動する車両に対して応用サービスを提供する路車間通信システムにおいて、走行中においても様々なアプリケーションを実行可能なメカニズムを備えた非ネットワーク型の通信プロトコルを提供することを目的とする。

研究テーマ

 1
  • 研究テーマ
    プローブ情報システム
    キーワード
    プローブ情報、高度道路交通システム、インターネット、通信プロトコル、センシング
    概要
    スマートフォン、タブレットなど種々センサと通信機能を搭載したデバイスの普及が進んでいる。これらのデバイスでは、センサと通信機能を結びつけることで、自ら移動するセンサとしての機能を有することになる。その機能を活用して様々な情報をセンタに集約するシステムを構築する際の課題、集約した情報の蓄積・解析に関わる課題についての研究を行っている。
    研究期間(開始)
    2013/04/01