工学部

永岡 真

ナガオカ マコト  (Makoto Nagaoka)

基本情報

所属
大阪産業大学 工学部 交通機械工学科 教授

研究者番号
90394600
J-GLOBAL ID
202201010673897653
researchmap会員ID
R000035619

主要な論文

 50
  • 永岡 真, 業天 祐治, 齋藤 崇志, 薮下 広高
    自動車技術会論文集 53(5) 904-909 2022年9月  査読有り筆頭著者責任著者
  • Hirotaka Yabushita, Makoto Nagaoka, Yuji Gyoten, Masaya Yoshioka, Yuichi Mori
    SAE International Journal of Advances and Current Practices in Mobility 4(2) 583-591 2021年9月21日  査読有り
  • 森安 竜大, 上田 松栄, 永岡 真, 池田 太郎, 西川 一明, 野尻 紗也香, 神保 智彦, 松永 彰生, 中村 俊洋
    自動車技術会論文集 49(6) 1162-1166 2018年11月  査読有り責任著者
    実機レスでの最適制御設計プロセスを目指し,機械学習を用いたディーゼルエンジン吸排気系制御を検討した.エンジンの詳細モデルから制御用順モデルを学習し,同モデルを用いたモデル予測制御をオフライン実行した結果から逆モデルを学習した.両モデルを用いた制御システムを構築し,目標値への追従能力を実験で検証した.
  • 河村 清美, 増田 糧, 植田 玲子, 井戸田 芳典, 永岡 真
    日本液体微粒化学会 微粒化 27(91) 43-49 2018年7月  査読有り責任著者
  • 長田 光広, 永岡 真
    日本機械学会論文集 82(838) 16-00073-16-00073 2016年6月  査読有り責任著者
  • Naoki Baba, Hiroaki Yoshida, Makoto Nagaoka, Chikaaki Okuda, Shigehiro Kawauchi
    Journal of Power Sources 252 214-228 2014年4月  査読有り責任著者
    To understand the thermal behavior of lithium-ion secondary batteries, distributed information related to local heat generation across the entire electrode plane, which is caused by the electrochemical reaction that results from lithium-ion intercalation or deintercalation, is required. To accomplish this, we first developed an enhanced single particle (ESP) model for lithium-ion batteries that provides a cost effective, timely, and accurate method for estimating the local heat generation rates without excessive computation costs. This model accounts for all the physical processes, including the solution phase limitation. Next, a two-way electrochemical-thermal coupled simulation method was established. In this method, the three dimensional (3D) thermal solver is coupled with the quasi-3D porous electrode solver that is applied to the unrolled plane of spirally wound electrodes, which allows both thermal and electrochemical behaviors to be reproduced simultaneously at every computational time-step. The quasi-3D porous electrode solver implements the ESP model. This two-way coupled simulation method was applied to a thermal behavior analysis of 18650-type lithium-ion cells where it was found that temperature estimates of the electrode interior and on the cell can wall obtained via the ESP model were in good agreement with actual experimental measurements. © 2013 Elsevier B.V. All rights reserved.
  • Makoto Nagaoka, Katsuyuki Ohsawa, Brent Crary, Toshio Yamada, Shigeki Sugiura, Nobuo Imatake
    SAE Transactions,JOURNAL OF ENGINES 106(3) 1369-1376 1998年1月  査読有り筆頭著者
  • 永岡 真, 野村 奈緒美
    日本機械学会論文集. B編 61(587) 2744-2750 1995年7月25日  査読有り筆頭著者
  • Makoto Nagaoka, Hiromitsu Kawazoe, Naomi Nomura
    SAE Transactions,JOURNAL OF ENGINES 103(3) 878-896 1995年1月  査読有り筆頭著者
  • Makoto Nagaoka, Nariaki Horinouchi
    日本数値流体力学会, CFD Journal Vol.2(No.2) 169-180 1993年9月  査読有り筆頭著者
    圧縮性流れの解法において、非構造格子上で有限体積法による離散化と2次精度の空間差分スキームを用いる際、時間解法には前処理付きBi-CGSTAB法が当時一般的なRunge-Kutta法やガウスザイデル法に比べて定常解への収束が早くかつ安定であることを示した。

MISC

 20
  • Hirotaka Iseki, Makoto Nagaoka, Shuntaro Yokoi, Naoto Horibe, Hiroshi Kawanabe
    SAE Technical Papers 2021-01-0603 (2021) 2021年4月  査読有り
    For the measurements of flow rate, pressure and/or temperature in an engine exhaust pipe, probes are often inserted into the exhaust pipe depending on the application. These measurement probes differ a lot in terms of their size and shape. The flow around the probes become further complicated due to the pulsation of engine exhaust flow. In this study, computational fluid dynamics (CFD) simulations were carried out and a zero-dimensional (0D) model was constructed to analyze the flow field around the probe and flow rate of a pulsating flow. The simulations and the measurements of the flow rate and pressure were performed on flows around a hexagonal prism inserted in a circular pipe which is intended to be a differential pressure flow meter. The velocity field was also measured using the particle image velocimetry (PIV) technique. The CFD simulation results were validated with the experiments for both steady and pulsating flows. In the 0D model for pulsating flow, the flow acceleration as well as pipe friction and prism drag losses were taken into account. The flow rates calculated using the model agreed well with the CFD simulation results. The relationship between the flow rate and the pressure was analyzed using the CFD and the 0D model. In the low flow rate and low pressure difference period, the relationship between the flow rate and the square root of pressure difference deviated from linear and exhibited hysteresis due to the flow acceleration. The cycle-averaged flow rates calculated using the 0D model were closer to those by the CFD simulations than those of a conventional steady flow correlation.
  • Ryo Masuda, Shogo Sayama, Takayuki Fuyuto, Makoto Nagaoka, Akimitsu Sugiura, Yasushi Noguchi
    SAE Technical Papers 2018-01-1727 2018年9月  査読有り
    This report describes the implementation of the spark channel short circuit and blow-out submodels, which were described in the previous report, into a spark ignition model. The spark channel which is modeled by a particle series is elongated by moving individual spark particles along local gas flows. The equation of the spark channel resistance developed by Kim et al. is modified in order to describe the behavior of the current and the voltage in high flow velocity conditions and implemented into the electrical circuit model of the electrical inductive system of the spark plug. Input parameters of the circuit model are the following: initial discharge energy, inductance, internal resistance and capacitance of the spark plug, and the spark channel length obtained by the spark channel model. The instantaneous discharge current and the voltage are obtained as outputs of the circuit model. When two arbitrary spark particles of the spark channel get close, the short circuit occurs if the electric potential differences between the two locations exceed a certain threshold voltage, which is raised with increasing distance between the two particles and decreasing discharge current. When the current falls below a lower limit current for maintenance of discharge, the spark blow-out occurs. A new spark channel is formed if the secondary circuit has the remaining energy which can break the electrical insulation between electrodes. Each line element of the spark channel particles heats and ignites the surrounding mixture gas. The turbulent flame speed and extinction are considered in the flame kernel behavior. The behavior of the spark channel, the current and voltage of the secondary circuit, and the ignition limit due to in-creases in the EGR rate were consistent with data measured from the spark ignition process in a combustion chamber.
  • Mitsuhiro Nagata, Makoto Nagaoka
    Proc. 10th International Symposium on Turbulence and Shear Flow Phenomena (TSFP10) 2017年10月  査読有り
  • Ryo Masuda, Kiyomi Kawamura, Makoto Nagaoka
    R&D Review of Toyota CRDL Vol.45(No.3) 73-75 2014年9月  
  • Makoto Nagaoka, Reiko Ueda, Ryo Masuda, Eberhard von Berg, Reinhard Tatschl
    R&D Review of Toyota CRDL Vol.42(No.2) 73-84 2011年6月  

講演・口頭発表等

 1

所属学協会

 3

産業財産権

 13

研究テーマ

 2
  • 研究テーマ
    自動車の内燃機関・パワートレイン要素のサロゲートモデルの研究
    研究期間(開始)
    2015
  • 研究テーマ
    カーボンニュートラル燃料/再生可能エネルギーの利活用に向けた燃料挙動の解析とモデリング
    研究期間(開始)
    2022