工学部

Makoto Nagaoka

  (永岡 真)

Profile Information

Affiliation
Professor, Faculty of Sysytem Engineering, Osaka Sangyo University

Researcher number
90394600
J-GLOBAL ID
202201010673897653
researchmap Member ID
R000035619

Major Papers

 50
  • 永岡 真, 業天 祐治, 齋藤 崇志, 薮下 広高
    自動車技術会論文集, 53(5) 904-909, Sep, 2022  Peer-reviewedLead authorCorresponding author
  • Hirotaka Yabushita, Makoto Nagaoka, Yuji Gyoten, Masaya Yoshioka, Yuichi Mori
    SAE International Journal of Advances and Current Practices in Mobility, 4(2) 583-591, Sep 21, 2021  Peer-reviewed
  • Moriyasu Ryuta, Ueda Matsuei, Nagaoka Makoto, Ikeda Taro, Nishikawa Kazuaki, Nojiri Sayaka, Jimbo Tomohiko, Matsunaga Akio, Nakamura Toshihiro
    Transactions of Society of Automotive Engineers of Japan, 49(6) 1162-1166, Nov, 2018  Peer-reviewedCorresponding author
    This paper considers machine learning based virtual design process of engine control system, and the demonstration in a diesel engine air path control is shown. This process contains two steps of machine learning. In the first step, a control-oriented forward model that predicts the transient behavior of the engine is learned from detailed engine model by using recurrent neural network (RNN). In the second step, an inverse model that determines the optimal control inputs to follow the references is learned from the numerical computation results of the offline model predictive control (MPC). The forward and inverse models could be used as a state observer and a controller, respectively, in a control system. An experiment of a diesel air path control system designed by the process was conducted using rapid control prototyping (RCP), and its following capability to the reference was demonstrated.
  • 微粒化 = Atomization : journal of the ILASS-Japan, 27(91) 43-49, Jul, 2018  Peer-reviewedCorresponding author
  • NAGATA Mitsuhiro, NAGAOKA Makoto
    Transactions of the JSME (in Japanese), 82(838) 16-00073-16-00073, Jun, 2016  Peer-reviewedCorresponding author
    A direct numerical simulation of compressible turbulent channel flow at low Mach number(Ma = 0.3) subject to strong temperature gradient is conducted. The wall temperature ratios which are defined by a temperature on the upper wall divided by that on the lower one, are set to 2 and 3. It is shown that the flow of high temperature wall side is laminarized as increasing the wall temperature ratio. Moreover, compressible and dilatational motions are induced on the low and high temperature wall sides, respectively. The identity of friction coefficient originally derived by Fukagata et al.(2002) (so-called ‘FIK identity’) is extended to those of friction coefficient and Nusselt number on the compressible channel flow. It is revealed that the viscous variation component attains to 16 % of the friction coefficient on the case of high temperature ratio. Furthermore, the pressure work component occupies about 20 % of the overall Nusselt number for the all cases. The pressure work has a redistributive effect between mean kinetic energy and internal energy. The energy transfer from mean kinetic energy to internal energy appears on the low temperature side whereas that toward the opposite direction on the high temperature side at the present low Mach number flow.
  • Naoki Baba, Hiroaki Yoshida, Makoto Nagaoka, Chikaaki Okuda, Shigehiro Kawauchi
    Journal of Power Sources, 252 214-228, Apr, 2014  Peer-reviewedCorresponding author
  • Makoto Nagaoka, Katsuyuki Ohsawa, Brent Crary, Toshio Yamada, Shigeki Sugiura, Nobuo Imatake
    SAE Transactions,JOURNAL OF ENGINES, 106(3) 1369-1376, Jan, 1998  Peer-reviewedLead author
  • NAGAOKA Makoto, NOMURA Naomi
    61(587) 2744-2750, Jul 25, 1995  Peer-reviewedLead author
    A calculation method for steady compressible flows using a solution adaptive unstructured mesh is proposed and it's applicability is demonstrated for two-dimensional and axisymmetric engine intake flows. The mesh is generated by the rule-based Delaunay triangulation method. The governing equations are discretized by the finite volume method. The second order accurate Roe's upwind scheme is used for the inviscid flux calculation. The viscous fluxes are calculated by the transformation to the local general coordinates. The utility of the adaptive unstructured mesh method is shown in the 2D engine intake flow calculations. The present method using a low Reynolds number k-c model is valid for the velocity profile in the turbulent boundary layer. The calculated discharge coefficients with valve lifts in an axisymmetric engine agree well with the measurements.
  • Makoto Nagaoka, Hiromitsu Kawazoe, Naomi Nomura
    SAE Transactions,JOURNAL OF ENGINES, 103(3) 878-896, Jan, 1995  Peer-reviewedLead author
  • Makoto Nagaoka, Nariaki Horinouchi
    日本数値流体力学会, CFD Journal, Vol.2(No.2) 169-180, Sep, 1993  Peer-reviewedLead author
    圧縮性流れの解法において、非構造格子上で有限体積法による離散化と2次精度の空間差分スキームを用いる際、時間解法には前処理付きBi-CGSTAB法が当時一般的なRunge-Kutta法やガウスザイデル法に比べて定常解への収束が早くかつ安定であることを示した。

Misc.

 20

Presentations

 1

Professional Memberships

 2

Industrial Property Rights

 13

研究テーマ

 2
  • 研究テーマ(英語)
    自動車の内燃機関・パワートレイン要素のサロゲートモデルの研究
    研究期間(開始)(英語)
    2015
  • 研究テーマ(英語)
    Analysis and modeling of fuel behavior for the utilization of carbon-neutral fuel and renewable energy
    研究期間(開始)(英語)
    2022