T Ogawa, M Takao, M M A Alam, S Okuhara, Y Kinoue
Journal of Physics: Conference Series 2217(1) 012073-012073 2022年4月1日
Abstract
In an oscillating water column (OWC) based wave energy device, a water column that oscillates due to the sea wave motion generates a bi-directional airflow in an air chamber, and finally, the bi-directional airflow driven air turbine converts the pneumatic energy into mechanical energy. The counter-rotating impulse turbine for bi-directional airflow has been proposed by M. E. McCormick of the United States Naval Academy in 1978. In a previous study, the authors investigated the effect of the turbine geometry on the performance of a counter-rotating impulse turbine for bi-directional airflow, and it was clarified that the efficiency of the turbine is higher than an impulse turbine with a single rotor for bi-directional airflow in a range of high flow coefficient. Moreover, this impulse turbine has a disadvantage that the efficiency in a range of low flow coefficient is remarkably low due to the deterioration of the flow between the two rotors. In this study, in order to make the counter-rotating impulse turbine practically compatible, the thickness of the middle vanes installed between the two rotors was changed, and the effect of the thickness on the turbine performance was investigated by the computational fluid dynamics (CFD) analysis. As a result, it was found that the efficiency of the counter-rotating impulse turbine with middle vanes increases as the thickness of the middle vanes decreased.