研究者業績

河村 建吾

カワムラ ケンゴ  (Kengo Kawamura)

基本情報

所属
大阪産業大学 全学教育機構 高等教育センター 准教授
学位
博士(理学)(2016年3月 大阪市立大学)
修士(教育学)(2013年3月 東京学芸大学)

研究者番号
00780727
J-GLOBAL ID
201601005562205590
researchmap会員ID
B000255459

研究キーワード

 2

論文

 9
  • 永井 朋子, 奥田 喬之, 中村 友哉, 佐藤 雄一郎, 佐藤 悠介, 金城 謙作, 河村 建吾, 菊田 伸, 熊ノ郷 直人
    工学教育 72(5) 5_75-5_80 2024年9月  査読有り
  • 永井 朋子, 金城 謙作, 河村 建吾, 中村 友哉, 奥田 喬之, 佐藤 雄一郎, 椋野 純一, 菊田 伸, 熊ノ郷 直人
    工学教育 71(3) 3_112-3_116 2023年5月  査読有り
  • 河村建吾
    Journal of Knot Theory and Its Ramifications 30(05) 2150029, 17pp-2150029 2021年6月15日  査読有り
  • 河村建吾
    Topology and its Applications 264(1) 394-412 2019年9月  査読有り
  • 河村建吾
    Journal of Knot Theory and Its Ramifications 27(14) 1850079, 23pp 2018年10月  査読有り
  • Seiichi Kamada, Kengo Kawamura
    TOPOLOGY AND ITS APPLICATIONS 230(1) 181-193 2017年10月  査読有り
    We introduce the notion of a ribbon-clasp surface-link, which is a generalization of a ribbon surface-link. We generalize the notion of a normal form on embedded surface-links to the case of immersed surface-links and prove that any immersed surface-link can be described in a normal form. It is known that an embedded surface-link is a ribbon surface-link if and only if it can be described in a symmetric normal form. We prove that an immersed surface-link is a ribbon-clasp surface-link if and only if it can be described in a symmetric normal form. We also introduce the notion of a ribbon-clasp normal form, which is a simpler version of a symmetric normal form. (C) 2017 Elsevier B.V. All rights reserved.
  • Kengo Kawamura, Kanako Oshiro, Kokoro Tanaka
    Algebraic and Geometric Topology 16(4) 2443-2458 2016年9月  査読有り
    The Roseman moves are seven types of local modifications for surface-link diagrams in 3-space which generate ambient isotopies of surface-links in 4-space. In this paper, we focus on Roseman moves involving triple points, one of which is the famous tetrahedral move, and discuss their independence. For each diagram of any surface-link, we construct a new diagram of the same surface-link such that any sequence of Roseman moves between them must contain moves involving triple points (and the number of triple points of the two diagrams are the same). Moreover, we find a pair of diagrams of an S-2-knot such that any sequence of Roseman moves between them must involve at least one tetrahedral move.
  • Kengo Kawamura
    TOPOLOGY AND ITS APPLICATIONS 196 551-557 2015年12月  査読有り
    D. Roseman introduced seven types of local transformations of surface-link diagrams. It is known that a particular type can be realized by the other six types. There is another type that can be realized by the other six types. We show that any types except these two types cannot be realized by the other six types. (C) 2015 Elsevier B.V. All rights reserved.
  • Teruhisa Kadokami, Kengo Kawamura
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS 23(13) 1450071, 14pp 2014年11月  査読有り
    The clasp number c(K) of a knot K is the minimum number of clasp singularities among all clasp disks bounded by K. It is known that the genus g(K) and the unknotting number u(K) are lower bounds of the clasp number, that is, max{g(K), u(K)} <= c(K). Then it is natural to ask whether there exists a knot K such that max{g(K), u(K)} < c(K). In this paper, we prove that there exists an infinite family of prime knots such that the question above is affirmative.

MISC

 10

講演・口頭発表等

 56

担当経験のある科目(授業)

 36

所属学協会

 1

共同研究・競争的資金等の研究課題

 2

社会貢献活動

 4

研究テーマ

 2
  • 研究テーマ
    曲面結び目のカンドルねじれアレクサンダー不変量について
    研究期間(開始)
    2017/12
  • 研究テーマ
    曲面結び目のダイアグラムとローズマン変形について
    研究期間(開始)
    2013/04