スポーツ健康学科

宮本 忠吉

ミヤモト タダヨシ  (Tadayoshi Miyamoto)

基本情報

所属
大阪産業大学 スポーツ健康学部スポーツ健康学科 教授
学位
博士(学術)(大阪市立大学)

研究者番号
40294136
ORCID ID
 https://orcid.org/0000-0001-5504-6119
J-GLOBAL ID
200901034436034369
researchmap会員ID
6000015757

外部リンク

学歴

 1

論文

 161
  • Marina Feeley, Tomoki Watada, Go Ito, Ai Shimada, Toru Sawai, Hideomi Nakata, Shingo Otsuki, Tadayoshi Miyamoto
    Experimental Physiology 2025年10月10日  
  • Eriko Kawai, Akihiro Sasaki, Kyosuke Watanabe, Miho Iwasaki, Shin-Ya Ueda, Hidehiro Nakahara, Yasuyoshi Watanabe, Tadayoshi Miyamoto
    Heliyon 11(6) e42766-e42766 2025年3月  査読有り
  • 嶋田 愛, フィーリー 真利奈, 伊藤 剛, 仲田 秀臣, 大槻 伸吾, 宮本 忠吉
    生体医工学 62(1) 22-30 2024年3月10日  査読有り
  • Toru Kawada, Tadayoshi Miyamoto, Masafumi Fukumitsu, Keita Saku
    American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 326(2) R121-R133 2024年2月1日  査読有り
    Although Gaussian white noise (GWN) inputs offer a theoretical framework for identifying higher-order nonlinearity, an actual application to the data of the neural arc of the carotid sinus baroreflex did not succeed in fully predicting the well-known sigmoidal nonlinearity. In the present study, we assumed that the neural arc can be approximated by a cascade of a linear dynamic (LD) component and a nonlinear static (NS) component. We analyzed the data obtained using GWN inputs with a mean of 120 mmHg and standard deviations (SDs) of 10, 20, and 30 mmHg for 15 min each in anesthetized rats (n = 7). We first estimated the linear transfer function from carotid sinus pressure to sympathetic nerve activity (SNA) and then plotted the measured SNA against the linearly predicted SNA. The predicted and measured data pairs exhibited an inverse sigmoidal distribution when grouped into 10 bins based on the size of the linearly predicted SNA. The sigmoidal nonlinearity estimated via the LD-NS model showed a midpoint pressure (104.1 ± 4.4 mmHg for SD of 30 mmHg) lower than that estimated by a conventional stepwise input (135.8 ± 3.9 mmHg, P < 0.001). This suggests that the NS component is more likely to reflect the nonlinearity observed during pulsatile inputs that are physiological to baroreceptors. Furthermore, the LD-NS model yielded higher R2 values compared with the linear model and the previously suggested second-order Uryson model in the testing dataset.NEW & NOTEWORTHY We examined the input-size dependence of the baroreflex neural arc transfer characteristics during Gaussian white noise inputs. A linear dynamic-static nonlinear model yielded higher R2 values compared with a linear model and captured the well-known sigmoidal nonlinearity of the neural arc, indicating that the nonlinear dynamics contributed to determining sympathetic nerve activity. Ignoring such nonlinear dynamics might reduce our ability to explain underlying physiology and significantly limit the interpretation of experimental data.
  • Marina Feeley, Go Ito, Shogo Tsubota, Toru Sawai, Hideomi Nakata, Shingo Otsuki, Tadayoshi Miyamoto
    Advanced Biomedical Engineering 13 35-42 2024年  査読有り

MISC

 151

講演・口頭発表等

 217

所属学協会

 7

共同研究・競争的資金等の研究課題

 34

社会貢献活動

 1

研究テーマ

 1
  • 研究テーマ
    統合的枠組みによる呼吸循環調節系の制御機構の解明とその応用研究
    研究期間(開始)
    1994/04/01